Review

Determination of Nitrogen Species (Nitrate, Nitrite and Ammonia Ions) in Environmental Samples by Ion Chromatography

R. Michalski¹*, I. Kurzyca²

¹Institute of Environmental Engineering of Polish Academy of Science, Sklodowska-Curie Street 34, 41-819 Zabrze, Poland ²Adam Mickiewicz University, Faculty of Chemistry, Department of Water and Soil Analysis, Drzymaly Street 24, 60-613 Poznań, Poland

> Received: March 4, 2005 Accepted: May 30, 2005

Abstract

The necessity of environmental protection has stimulated development of all kinds of methods allowing determination of different pollutants in different elements of the natural environment, including methods for determining inorganic nitrogen ions. Many of the methods used so far have proven insufficiently sensitive, selective or accurate and recently much attention has been paid to ion chromatography, which seems most promising. This paper reviews applications of ion chromatography for determining nitrate, nitrite and ammonium ions in environmental samples and in food products along with ISO standards and the relevant methods proposed by the US EPA and Dionex.

Literature examples describe the application of ion chromatography for determining NO_3^- , NO_2^- and NH_4^+ ions in water, waste water, air, food products and other complex matrix samples. Critical analysis of the methods based on ion chromatography is presented.

Keywords: ion chromatography, nitrate, nitrite, ammonia ions

Introduction

Nitrogen - one of the most commonly occurring elements in nature - forms many inorganic ionic species, of which the most important are nitrate, nitrite and ammonium ions.

The main anthropogenic sources of nitrates in the environment are municipal and industrial wastes and artificial fertilizers. Nitrogen oxides present in the air and originating from natural and anthropogenic sources (combustion, transportation) after the reactions with water come back to the earth surface in the form of acid rains [1]. Nitrites appear as intermediates in the nitrogen cycle. They are unstable and, depending on conditions, are transformed into nitrates or ammonia. Their presence in water can be a result of water processing or use of nitrite salts as corrosion inhibitors. Nitrites are commonly used in preservatives. To surface waters they get from the same sources as nitrates, i.e. in municipal wastes, industrial wastes, mining wastes and with water flowing in from artificially fertilized fields. The sources of ammonium ions in surface waters are reactions of biochemical decomposition of organic nitrogen compounds, reduction of nitrites and nitrates by hydrogen sulfide, iron (II), humus substances (or other reducing compounds) and, first of all, municipal wastes, industrial wastes and animal farm wastes. Nitrogen compounds enhance eutrophisation of surface waters. Organic nitrogen compounds undergo biochemical decomposition into nitrites later oxidized to nitrates.

^{*}Corresponding author; e-mail: michalski@ipis.zabrze.pl

The main source of inorganic nitrogen ions in the human organism is drinking water and food products, in particular beetroots, celery, lettuce, spinach and preserved meat. An estimated daily dose of nitrates consumed by man reaches 75-100 mg, of which 80-90% come from vegetables and 5-10% from water [2]. The admissible concentration of nitrates and nitrites in drinking water in the majority of countries controlling these parameters is 50 mg L⁻¹ and 0.5 mg L⁻¹, respectively. The admissible concentration of ammonium ions expressed in ammonia is $0.5 \text{ mg } L^{-1} [3,4]$. Nitrates and nitrites do not have direct carcinogenic effects on humans, but it is supposed that neoplasmic diseases in people are related to the formation of N-nitroso compounds, of which many are carcinogenic to animals. High concentrations of nitrogen ions in drinking water and other food products can lead to serious problems and diseases. Taken in excess, the compounds increase the risk of appearance of methemoglobinemia, especially in infants below 3 months old, which is directly related to transformation of nitrates in nitrites in humans [5].

EU countries in 1991 approved the Nitrate Directive [6] on the protection of water against pollution by nitrates from agricultural origin. The Directive recommends certain measures to protect the natural environment against degradation caused by nitrogen compounds used for agricultural purposes.

General Principles of Nitrogen Species Determination

Nitrite, nitrate and ammonium ions are determined in drinking waters, surface waters and underground waters, as well as in municipal and industrial wastes. Because of ion instability, the samples should be analyzed immediately after collection [7,8]. The methods of collection and storage of water samples for determination of these ions are described by Gardolinski et al. [9]. Because of low concentrations of the ions to be determined, their direct analysis is not always possible. Some preliminary sample preparation may be needed, including precipitation procedures, ion exchange, distillation, microdiffusion, solvent extraction or thin layer chromatography [10]. Preparation of samples with a complex matrix (blood, food products) is usually time consuming, laborious and, performed incorrectly, can be a source of significant errors. Preliminary preparation of samples for analyses by the methods of ion chromatography and capillary electrophoresis has been described by Haddad et al. [11].

Nitrogen Determination by Classical Methods

There are a number of methods for determining NO_2^{-} , NO_3^{-} and NH_4^{+} ions. Determination of these analytes in the sample often poses analytical problems related to low selectivity of the methods and the presence of many interfering factors. The classical methods used for these purposes

can be divided into weight, titration, spectrophotometric (UV/Vis, IR, fluorimetric) and electroanalytical (including potentiometric based on the use of ion-selective electrodes, voltamperometric, amperometric, coulometric) [12].

The most important methods for determination of nitrates are colorimetric ones (e.g. determination of nitrate nitrogen after a reaction with p-fluorophenol), or reduction in a cadmium column. The method most often used for routine analyses is based on the reaction of nitrate nitrogen with sodium salicylate in an acidic environment, giving nitrosalicylate acid transformed on alkalization into the coloured (yellow) ionized form. Nitrate ions can also be determined by the potentiometric method with an ion-selective electrode [12,13].

The basic method for determination of nitrites in water samples (proposed by Griess over 125 years ago), relies on the reaction of nitrites with sulphanilic acid giving diazo compounds, which couples with 1-naphthylamine. The reaction gives an azo dye of intense red colour. There are other methods that are modifications of that proposed by Griess, e.g. that involving the reaction with sulfanilamide and N-(1-naphthyl)-ethylenediamine) [12, 13].

The method for determination of ammonia was proposed by Nessler in 1856. In this method the Nessler reagent (alkaline solution of mercuric potassium iodide - K_2HgI_4) reacts with ammonia to give a colour complex. Unfortunately, elimination of interfering factors is not always possible in this method. Ammonium ions are often determined by a colorimetric indophenol titration method and a potentiometric method with ion-selective electrode [13].

The US Environmental Protection Agency (EPA) recommends the methods of ion chromatography, potentiometric and colorimetric methods for determining nitrate and nitrite ions [14]. The ISO standard methods used for determinations of nitrates, nitrites and ammonium ions (excluding ion chromatography method) are presented in Table 1. These methods have some advantages and disadvantages. The latter are related to low selectivity, low sensitivity and poor repeatability of determinations. Nevertheless, the search for alternative new methods continues.

Determination of Nitrogen Species by Ion Chromatography

One of the most commonly used methods for determining anions (including NO_2^- and NO_3^-) and cations (including NH_4^+) is ion chromatography. It offers the possibility of simultaneous determination of a few ions in a short time, good reproducibility of results, high sensitivity, the possibility of simultaneous determinations of anions and cations (including organic and inorganic ions), small volume samples and the possibility of using different detectors (from the most popular conductometric one, UV, to mass spectrometry) [15, 16]. Ion chromatography is particularly recommended for speciation analysis. Such analyses have been performed for simultaneous separation and determination of nitrate and nitrite ions [17] or

Mathad number	Mathad name	Panga [mg I -1]	Main interforences	
Method number	Method hame		Main Interferences	
ISO 7890-1	Water quality. Determination of nitrate.	0.006 - 25.0	Strong oxidants, chloride,	
(1986)	Part 1: 2,6-Dimethylphenol spectrometric method		turbidity	
ISO 7890-2	Water quality. Determination of nitrate.	0.22 - 45.0	Calcium, magnesium,	
(1986)	Part 2: 4-Fluorophenol spectrometric method after distillation	0.22 - 45.0	turbidity	
ISO 7890-3	Water quality. Determination of nitrate.	0.003 0.2	Chloride, nitrite, calcium,	
(1988)	Part 3: Spectrometric method using sulfosalicylic acid	0.003 - 0.2	magnesium	
ISO 6777	Water quality. Determination of nitrite.	0.002 0.1	Chloramine, chlorine,	
(1984)	Molecular absorption spectrometric method	0.003 - 0.1	polyphosphates, tiosulphates	
ISO 13395	Water quality. Determination of nitrite nitrogen and nitrate	NO - 0 32 - 20 0		
(1996)	nitrogen and the sum of both by flow analysis (CFA and FIA)	$NO_2 \cdot 0.01 - 1.0$	Organic matter, surfactants	
and spectrometric detection		1103.0.01-1.0		
ISO 11905-1	Water quality. Determination of nitrogen.	About 0.1 for each	Dissolved or suspended	
(1997)	Part 1:Method using oxidative digestion with peroxosulfate	determined ions	organic matter	
ISO 5664	Water quality. Determination of ammonium. Distillation	0.1 10.0	Calcium, magnesium,	
(1984)	and titration method	0.1 - 10.0	aluminium, phosphates	
150 6779	Water quality Determination of ammonium Detentiometric		Selected cations present	
(1084)	mathed	0.2 - 50.0	in high concentration,	
(1964)	memou		unstable temperature	
ISO 5664	Water quality - Determination of ammonium. Distillation	0.2 10.0	Uras and chlorominas	
(1984)	and titration method.	0.2 - 10.0	orea and emorannies	
ISO 7150-1	Water quality - Determination of ammonium.	0.002 1.0	Magnasium salaium	
(1984)	Part 1: Manual spectrometric method	0.003 - 1.0	Magnesium, calcium	
ISO 7150-2	Water quality. Determination of ammonium.	0.5 50.0	Magnasium salaium	
(1986)	Part 2: Automated spectrometric method	0.5 - 50.0	Magnesium, calcium	
ISO 11732	Water quality. Determination of ammonium nitrogen	0.1 10.0	Volatile amines, high	
(1997)	by flow analysis (CFA and FIA) and spectrometric detection	0.1 - 10.0	convcentration of metal ions	

Table 1. ISO standards for determination of nitrate, nitrite and ammonium ions in water samples.

sulphate and sulphite ions [18]. Recently, ion chromatography has been used to determine of side products of water disinfection (bromates, chlorates, chlorites) [19] and metal ion species [20].

Separation and determination of nitrate and nitrite ions by ion chromatography is carried out in anion-exchange columns filled with a suitable exchanger and using a proper eluent (e.g. water solution of sodium carbonate and/or sodium hydrocarbonate) and most often conductometric or UV detection. Nitrogen ion determination by ion chromatography is accompanied by determination of other anions present in the sample, such as: fluorides, chlorides, phosphates, bromides and sulphates. The main problems are related to proper separation of NO₂⁻ from Cl⁻ ions. Irrespective of the column used, the retention times of the ions (related to their structure, ionic radius, selectivity against the exchanger) are close and in environmental samples with chloride ions concentrations usually a few times higher than those of nitrite ions, the peak assigned to NO₂⁻ can be masked by a large peak assigned to Cl⁻ ions. Consequently, the quantitative analysis of nitrite ions can be very difficult or impossible. The retention times of bromide and phosphate ions are close to nitrate ions but, fortunately, on the majority of anion-exchange columns they can be selectively separated. In determination of ammonium ions, the column is filled with cationic exchanger and a conductometric detector is most often employed. As the ammonium ions are usually determined together

with alkali metal ions and alkali earth metal ions, the main problem is related to the overlapping of the peaks assigned to sodium ions (often present in much higher concentration) and the peak assigned to NH_4^+ .

The problems related to separation of the pairs of Cl^{-}/NO_{2}^{-} and Na^{+}/NH_{4}^{+} ions can be solved by optimizing the conditions of analysis, i.e. changing the composition of the eluent, type or pH of eluent, intensity of its flow, type of column and detector. Moreover, the excess ions interfering in the determination can be removed by special cartridges. The effect of eluent and detector on the determination of nitrite ions in the presence of chloride ions in high concentrations has been discussed by Pastore et al. [21]. The use of a classical conductometric detector and water solution of Na₂CO₂/NaHCO₂ as eluent, the maximum ratio of the concentrations of the ions Cl-/NO₂ensuring good performance is 200:1. With water solution of NaCl as eluent and UV detector, this ratio increases to 200,000:1, and in the system with NaCl as eluent and an amperometric detector it increases up to 1,000,000:1.

Although ion chromatography has been designed for ion analyses in water, the recent progress in development of new fillings, new detection methods and new preliminary procedures of sample preparation has extended the use of this method to samples with a more complex matrix. A review on the applications of ion chromatography in analyses of biological samples has been prepared by Singh et al. [22] in analyses of food products - by Pereira [23] and Buldini et al. [24]. Compar-

Method number	Method name	Ions determined	Detector	Range for nitrogen ions [mg L ⁻¹]	Interferences
ISO 10304 – 1 (1992)	Water quality - Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulfate ions using liquid chromatography of ions - Part 1 : Method for water with low contamination	F ⁻ , Cl ⁻ , NO ₂ ⁻ , PO ₄ ³⁻ , Br, NO ₃ ⁻ , SO ₄ ⁻²⁻ ,	Conductivity	$NO_{2}^{-}: 0.05 - 20$ $NO_{3}^{-}: 0.1 - 50$	Selected organic ac- ids such as: malonic, maleic and ions in high concentration
ISO 10304 – 2 (1995)	Water quality - Determination of dissolved anions by liquid chro- matography of ions – Part 2 : De- termination of bromide, chloride, nitrate, nitrite, orthophosphate and sulfate in waste waters	Br, Cl ⁻ , NO ₃ ⁻ , NO ₂ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ ,	Conductivity or UV/vis	$NO_2^-: 0.05 - 20$ $NO_3^-: 0.1 - 50$	
ISO 14911 (1998)	Water quality – Determination of dissolved Li^+ , Na^+ , NH_4^+ K^+ , Mn^{2+} , Ca^{2+} , Mg^{2+} , Sr^{2+} and Ba^{2^+} using ion chromatography method	Li ⁺ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mn ²⁺ , Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺	Conductivity	NH ₄ ⁺ : 0,1 - 10	Selected aminoacids, alifatic amines and some metal ions such as: Zn ²⁺ , Ni ²⁺ , Cd ²⁺ .

Table 2. ISO standards for determination of nitrate, nitrite and ammonium ions in water samples.

Table 3. Ion chromatography-based methods for determination of the NO₃⁻, NO₂⁻ and NH₄⁺, recommended by selected American organizations.

Method number	Method name	Ions determined	Matrix	
United States Environmental Protection Agency				
300.0	The determination of inorganic anions in water by ion chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ⁻ ₂ , NO ⁻ ₃ , PO ⁻³⁻ ₄ , SO ⁻² ₄ , ClO ⁻ ₂	Drinking water, surface water,	
300.1	The determination of inorganic anions in waterby ion chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , ClO ₂ ⁻ , ClO ₃ ⁻ , BrO ₃ ⁻	Drinking water, ground water, surface water	
300.6	Chlorite, orthophosphate, nitrate and sulphate in wet deposition by chemically suppressed ion chromatography	Cl ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻	Rain water	
300.7	Dissolved sodium, ammonium, potassium, magnesium and calcium in wet deposition by chemically suppressed ion chromatography	$Na^+, NH_4^+, K^+, Mg^{2+}, Ca^{2+}$	Rain water	
9056	Inorganic anions by ion chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻	Water, solids	
	Association of Analytica	al Communities (AOAC)		
993.30	Determination of inorganic anions in water using ion chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻	Water	
	National Institute for Occupation	onal Safety and Health (NIOSH)		
4110	Anions determination by ion chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻	Water	
American Society for Testing and Materials (ASTM).				
D 4327-97	Anions in water by chemically suppressed ion chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻	Drinking water, wastewater	
D 5085-90	Determination of chloride, nitrate and suplhate in atmospheric wet deposited by chemically suppressed ion chromatography	Cl ⁻ , NO ₃ ⁻ , SO ₄ ⁻²⁻	Rain water	

ison of different methods of nitrates and nitrites determination in plant samples and biological fluids has been made by Cruiz and Mam [25] and Everett et al. [26]. Determination of nitrites and nitrates in preserved meat has been described by Bernini et al. [27] and in blood serum by Monoghan et al. [28]. Ion chromatography has become a standard method for determining anions and cations in water, air and solid samples. In 1984 the American Society for Testing Materials (ASTM) approved it as the standard method for determining anions in water [29]. The EPA also has recommended

Method number	Method name	Ions determined	Matrix
AN 4	Analysis of engine coolants by ion chromatog- raphy	F ⁻ , Cl ⁻ , Br, NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺	Cooling solutions
AN 25	Determination of inorganic ions and organic aids in non-alcoholic carbonated beverages	Cl ⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ , selected organic acids, Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺	Non-alcoholic beverages carbonated
AN 31	Determination of anions in acid rain by in chromatography	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ²⁻	Rain water
AN 51	Method for determination of anions in sodium hydroxide	F ⁻ , Cl ⁻ , Br ⁻ , NO ⁻ ₂ , NO ⁻ ₃ , PO ⁻³⁻ ₄ , SO ⁻²⁻ ₄	NaOH solutions
AN 56	Determination of trace anions and key organic acids in high purity ammoniated and borated waters found in steam cycle power plants	F [•] , Cl ⁻ , Br, NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , selected organic acids	Recylculated water from power plants
AN 78	Determination of trace anions in concentrated hydrofluoric acid	Cl ⁻ , Br ⁻ , NO ₂ ⁻ , SO ₄ ⁻²⁻	Fluoric Acid
AN 81	Determination of oxyhalides and other anions by ion chromatography using a borate-based eluent	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , ClO ₂ ⁻ , ClO ₃ ⁻ , BrO ₃ ⁻	Drinking water
AN 86	Determination of trace cation in power plant waters containing morpholine	$Na^+, NH_4^+, K^+, Mg^{2+}, Ca^{2+}$	Recylculated water from power plants
AN 93	Determination of trace anions in concentrated bases using autoNeutralization TM pretreatment and ion chromatography	Cl ⁻ , Br ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , ClO ₂ ⁻⁷ , oxalate	Concentrated bases
AN 94	Determination of trace cations in concentrated acids using autoNeutralization [™] pretreatment and ion chromatography	Li ⁺ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , ethylamines	Concentrated acids
AN 113	Determination of trace anions in high purity waters by high volume/direct injection ion chromatography	F ⁻ , Cl ⁻ , Br, NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ , oxalate	Ultrapure water
AN 114	Determination of trace anions in high purity waters using direct injection and two-step isocratic ion chromatography	F ⁻ , Cl ⁻ , Br, NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ , oxalate	Ultrapure water
AN 136	Determination of inorganic oxyhalide dis- infection byproducts anions and bromide in drinking water using ion chromatography with the addition of a postcolumn reagent for trace bromate analysis	F ⁻ , Cl ⁻ , Br, NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ²⁻ , ClO ₂ ⁻ , ClO ₃ ⁻ , BrO ₃ ⁻	Drinking water
AU 101	Transition metals in power plant high purity water	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , oxalate	Ultrapure water
AU 102	Trace anions in power plant high purity water and borated water	F ⁻ , Cl ⁻ , Br ⁻ , NO ⁻ ₂ , PO ⁻³⁻ ₄ , SO ⁻²⁻ ₄ , oxalate	Ultrapure water
AU 103	Trace anions in power plant high purity water	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , oxalate	Recylculated water from power plants
AU 106	Trace calcium and magnesium in brine	F ⁻ , Cl ⁻ , Br ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ⁻³⁻ , SO ₄ ⁻²⁻ , Mg ²⁺ , Ca ²⁺	Brines
AU 121	Monovalent cations in explosives	Li ⁺ , Na ⁺ , NH ₄ ⁺ , K ⁺	Explosives

Table 4. Methods recommended by Dionex (Dionex Co., Sunnyvale, CA, USA).

a number of methods which use ion chromatography in analyses related to environmental protection [30]. The ISO standards for anion and cation determination by ion chromatography are given in Table 2, while the standards recommended by select American organizations are given in Table 3. Table 4 presents the application notes on determination of ionic nitrogen species recommended by Dionex - one of the most renowned firms specializing in ion chromatography in the world.

Apart from standard methods, literature gives many examples of applications of ion chromatography in deter-

mination of nitrites, nitrates and ammonium ions in all kinds of water samples, municipal and industrial wastes, precipitations, in gases absorbed in solutions, in food products, biological samples and other samples with complex matrix. Selected examples of ion chromatography method applications for determination of nitrates and nitrites, with specified samples, column, eluent and detector, are presented in Table 5 (nitrates and nitrites in water samples), Table 6 (nitrites and nitrates in food products), Table 7 (nitrites and nitrates in air), and Table 8 (nitrates and nitrites in complex matrix samples). Examples of the

Sample matrix	Column	Eluent	Detector	References
Waters	Waters IC-Pak Anion HC	Na ₂ CO ₃ + NaHCO ₃	Conductivity	31
Reference material	Dionex IonPac AS4A	$Na_2CO_3 + NaHCO_3$	Conductivity	32
Environmental water	TSK guardgel QAE-SW (Tosh)	Trimetallic acid-EDTA	UV/Vis	33
Polar ice core	Laboratory packed with resins synthetized	Potassium hydrogenphtalate	Conductivity	34
Natural water	Dionex IonPac AS4A	NaHCO ₃	Conductivity	35
Synthetic samples	TSK-gel IC anion PWXL (Tosh)	Sodium tetraborate, boric acid, potassium gluconate	Conductivity, UV	36
Sea water	Column filled with copper-plated cadmium	Sodium tetraborate, boric acid	UV/Vis	37
Rain water	Dionex IonPac AS4	Na ₂ CO ₃ + NaHCO ₃	Conductivity	38
Mineral water	Biotronik BT I ANS	$Na_2CO_3 + NaHCO_3$	Conductivity	39
Surface water	Metrohm IC anion	Na ₂ CO ₃ + NaHCO ₃	Conductivity	40
Drinking water	Biotronik BT II AN	Na ₂ CO ₃ + NaHCO ₃	Conductivity	41
Snow	Biotronik BT II AN	Na ₂ CO ₃ + NaHCO ₃	Conductivity	42
Drinking water	Dionex AS11	NaOH	Conductivity	43
Water	Dionex IonPac AS9-HC	Na ₂ CO ₃ + NaHCO ₃	Conductivity/ UV/Vis	44
Water	ODS column	Phthalate	UV/Vis	45
Drinking water	Metrohm IC Anion Column Super Sep	Phtalic acid	Conductivity	46
Water	Laboratory made	$NaOH + HClO_4$	Conductivity	47
Groundwater	Dionex IonPac AS11	NaOH	Conductivity	48
Water	Dionex IonPac AS9-SC	HCl + tris-(hydroxy-methyl)- -aminomethane	UV/Vis	49
Water	Dionex IonPac AS9-SC	p-toluenesulfonic acid + tris- -(hydroxy-methyl)-aminomethane	UV/Vis	49
Water	Dionex IonPac AS5A	HClO ₄ + tris-(hydroxy-methyl)- -aminomethane	UV/Vis	50
Dam water, river water	Laboratory packed bed Cu-Cd reductor column	$Na_2B_4O_7$	Conductivity	51
Power plant water	Dionex IonPac AS10	NaOH	Conductivity	52
Rainwater	Dionex IonPac AS11	NaOH	Conductivity	53
Reference materi- als	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	54
Fog samples	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	55
Rain	Dionex IonPac AS4A	$Na_2CO_3 + NaHCO_3$	Conductivity	56
Waters from peatlands	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	57
Atmospheric aerosols	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	58
Rainwater	Waters IC Pak A HC	Gluconic acid + Boric acid	Conductivity	59
Drinking water	Dionex IonPac AS4A or AS10	NaOH	Conductivity	60
Fog samples	Dionex IonPac AS14	NaOH	Conductivity	61
Rain water	Dionex IonPac AS4 or AS7	Na ₂ CO ₃ + NaHCO ₃	Conductivity	62

Table 5. Examples of ion chromatography applications for determining nitrates and/ or nitrites in water samples.

Table 5. continues on next page...

River water	Shimadzu IC-A3	Phthalic acid + tris-(hydroxy-methyl)- -aminomethane	Conductivity	63
Waters	Metrohm Star-Ion A300	Na ₂ CO ₃ + NaHCO ₃	Conductivity	64
Drinking water	Waters IC-Pak C anion	PDCA	UV/Vis	65
Roof runoff waters	Dionex IonPac AS14	Na ₂ CO ₃ + NaHCO ₃	Conductivity	66
Rainwater	Dionex IonPac AS14	Na ₂ CO ₃ + NaHCO ₃	Conductivity	67
Drinking water	Dionex IonPac AS17	NaOH	Conductivity	68
Atmospheric aerosols	Metrohm Metrosep SUPP3	Na ₂ CO ₃ + NaHCO ₃	Conductivity	69
Sea water	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	70

Table 6. Examples of ion chromatography applications for determining nitrates and/ or nitrites in food products.

Sample matrix	Column	Eluent	Detector	References
Meat products	Dionex IonPac AS11	NaOH	UV/Vis	71
Coffee	Mixed bed column packed with anion exchange resin) ICS-A23 and cation exchange resin CH1	Oxalic acid	Conductivity	72
Spinach	IC anion PRP-X100	Phthalic acid, acetone	Amperometric	73
Fruits juice	Dionex OmniPac PAX-500	NaOH-ethanol-methanol	Conductivity	74
Wine	Shimadzu Shim-pack IC-A1	Phthalic acid	Conductivity	75
Orange juice	Hamilton PRPx100	2,5-dihydroxy-1,4-benzenedisulfonic acid + EDTA	UV/Vis	76
Food	Dionex IonPac AS4, AS9	Na ₂ CO ₃ + NaHCO ₃	Conductivity or UV/Vis	77
Frozen food	Yokogawa ICS-A23 and Yokogawa CH1	Na ₂ CO ₃ + NaHCO ₃	Conductivity	78
Spinach	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	79
Beer	Dionex IonPac AS4	Na ₂ CO ₃ + NaHCO ₃	Conductivity	80
Food extracts	Alltech Universal Anion	Lithium 4-hydroxbenzoate	Conductivity	81
Meats	Wescan Anion Exclusion/HS	H_2SO_4	Amperometry	82
Beer	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	83
Rice flour	Dionex IonPac AS 12A	Na ₂ CO ₃ /NaHCO ₃	Conductivity	84
Spinach	Dionex IonPac S4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	85
Vegetables	Laboratory packed anion-exchange column	Potasium gluconate + borate acid	Conductivity	86
Fruits	Waters IC-PAK Anion	$\mathrm{KH}_{2}\mathrm{PO}_{4} + \mathrm{Na}_{2}\mathrm{HPO}_{4}$	UV-Vis	87
Meat extract	Dionex IonPac AS-3	Na ₂ CO ₃ + NaHCO ₃	Conductivity	88
Vegetables and salads	Wescan 269-001 anion	Phthalate	Conductivity	89
Infant food	Hamilton PRP-1	Tetrapentyloammonium + aceto- nitrile	UV/Vis	90
Cured meat	Vydac 302 IC, Waters CN	KH_2PO_4	UV/Vis	91
Cured meat	Waters IC-Pak A	KH_2PO_4	UV/Vis	92
Cured meat	Biotronik BT II AN	Chloromethanesulphonic acid	UV/Vis	93
Vegetables	Waters IC Pak	sodium gluconate + borax	Conductivity	94
Edible vegetable oils, fats	Dionex IonPac AS9	Na ₂ CO ₃ + NaHCO ₃	Conductivity	95

Sample matrix	Column	Eluent	Detector	References
Flue gas	Dionex IonPac AS4A or AS7	Na ₂ CO ₃ + NaHCO ₃ or NaOH + p-cyanophenol	Conductivity	96
Stack gases	Toyo Soda IC-Anion-PW	Potassium gluconate + sodium borate + EDTA	Conductivity or UV/Vis	97
Ambient air	Biotronik BT I ANS	Na ₂ CO ₃ + NaHCO ₃	Conductivity	98
Ambient air	Dionex IonPac AS14	Na ₂ CO ₃ + NaHCO ₃	Conductivity	99
Atmospheric aerosols	RP ₁₈	Tetrabutyl-ammonium hydroxide, 3-(N-morpholine)-propane-sulfonic acid (zwitterion), Na,CO ₃	Conductivity	100
Ambient air	Shim-pack IC-A1 or Dionex IonPac AS9-SC	Phthalic acid + tris-(hydroxy-methyl)-aminomethane or Na ₂ CO ₃ + NaHCO ₃	Conductivity	101
Atmospheric air	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	102
Atmospheric air	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	103
Atmospheric air	Hamilton PRP-X 100	Phthalic acid + acetone	Conductivity	104

Table 7. Examples of ion chromatography applications for determining nitrates and/ or nitrites in gas samples.

Table 8. Other examples of ion chromatography applications for determining nitrate and/ or nitrite ions in samples with complex matrix.

Sample matrix	Column	Eluent	Detector	References
Blood	Dionex IonPac AS12A	Na ₂ CO ₃ + NaHCO ₃	Culometric	105
Pharmaceutical compounds	Carbon B1-01 (Bio-TechResearch)	TBA, Na ₂ CO ₃ , acetonitrile	Conductivity	106
Urine	A C ₁₈ reversed-phase column (TSKgel, ODS-100S, i.d., Tosoh, Tokyo, Japan) modified by saturation with micelles of 3-(N, N-dimethylmyristylammonio)prop anesulfonate (Zwittergent 3–14)	$\mathrm{H_{3}BO_{3}+Na_{2}B_{4}O_{7}}$	Conductivity	107
Fertilizers	Shim-pack IC-A1	Citric acid + NaOH	Fluorescence	108
Human plasma	Ion exchanger based on styrene- divinylbenzene with quarter- nary amine in the Cl ⁻ form of the HEMA-BIO 1000Q type	NaClO ₄	UV/Vis	109
Tear fluid, blood serum	Dionex IonPac AS4A	Na ₂ CO ₃ + NaHCO ₃	Conductivity	110
Human saliva	Dionex IonPac AS12A	$Na_2CO_3 + NaHCO_3$	Conductivity	111
Mouse plasma	Dionex IonPac AS9-SC	$Na_2CO_3 + NaHCO_3$	Conductivity	26
Human serum	Dionex IonPac AS4A, AS9A, AS12, or Nucleopac-PA 100, Carbopac PA	Na ₂ CO ₃ + NaHCO ₃ or NaCl	Conductivity or UV/Vis	28
Human blood	Anion-exchange LC Sykam	Acetonitrile + methanol + H_2O	Electrochemical or UV/Vis	112
Serum	Anion-exchange Hamilton	Methanosulphonic acid	UV/Vis	113

ion chromatography applications for determination of ammonium ions are given in Table 9.

An important recent achievement of ion chromatography is the use of highly selective microcolumns for fast determinations of anions and cations [130]. The application of a monolithic column covered with didodecyldimethylammonium bromide (DDAB) for fast (about 30 seconds) analyses of iodine, chloride, nitrate, nitrite, phosphate and sulphate ions has been described by Hatsis and Lucy [131]. They used 6 mM o-cyanophenol (pH 7.0) at extremely high flow (up to 10 mL/min) as eluent and a conductometric detector. The limits of detection

Sample matrix	Column	Eluent	Detector	References
Beverages carbonated	Mixed bed laboratory packed with Yokogawa ICS-A23 and Yokogawa CH1	Oxalic acid	Conductivity	114
Tea	Dionex IonPac CS3	HCl + 2,3-diaminopriopionic acid	Conductivity	115
Spinach	Dionex IonPac CS1	HCl	Conductivity	116
Bread, cheese	Waters IC-PAK Cation M/D	EDTA + HNO ₃	Conductivity	117
Food simulants	Dionex IonPac CS3	HCl + 2,3-diaminopriopionic acid	Conductivity	118
Food extracts	Wescan Cation-R	Lithium hydrogenphthalate	Conductivity	119
Grain	Waters IC-PAK Cation	HNO ₃	Conductivity	120
Foods	Metrohm Supersep 125 IC-Cation	Citric acid + PDCA	Conductivity	121
Beer	Dionex IonPac CS1	HCl + m-phenylenediamine	Conductivity	83
Mineral water	Waters IC-PAK CM/D	HNO ₃ + EDTA	Conductivity	122
Air in cleanrooms	Dionex IonPac CS15	H_2SO_4 + acetonitrile	Conductivity	123
Fog samples	Dionex IonPac CS12	Methanesulphonic acid	Conductivity	55
Snow and firn samples	Dionex IonPac CS12	Methanesulphonic acid	Conductivity	124
Rain	Dionex IonPac CS12	Methanesulphonic acid	Conductivity	56
Waters from peatlands	Dionex IonPac CS10	HCl + 2,3-diaminopropionic acid	Conductivity	125
Atmospheric aerosols	Dionex IonPac CS10	HCl + 2,3-diaminopropionic acid	Conductivity	58
Rainwater	Waters IC Pak CM/D	HNO ₃ + EDTA	Conductivity	126
Drinking water	Fast Cation	HCl + 2,3-diaminopropionic acid	Conductivity	127
Fog samples	Dionex IonPac CS12	Methanesulphonic acid	Conductivity	61
Rain water	Dionex IonPac CS2	HCl	Conductivity	62
Drinking water	Dionex IonPac CS16	Methanesulphonic acid	Conductivity	128
Roof runoff waters	Dionex IonPac CS12A	Methanosulphonic acid	Conductivity	66
Rainwater	Dionex IonPac CS12A	H_2SO_4	Conductivity	67
Atmospheric aerosols	Metrohm Metrosep Cation1-2	Tartaric acid	Conductivity	69
Natural waters	Dionex IonPac CG10 + CG10	HCl	Conductivity	129

Table 9. Examples of ion chromatography applications for determination of ammonium ions.

for all these ions were on a level of a few to a few dozen $\mu g \ L^{\text{-1}}.$

Kitamaki et al., have described simultaneous determination of nitrites, nitrates and ammonium ions in river water samples on microcolumns [132] with NO₃⁻ and NO₂⁻ detection by a UV detector at λ =206 nm, ammonium ion detection by a fluorescence detector after the post-column derivatization with o-phthaldehyde in the presence of 2-mercaptoethanol.

Ion chromatography as a method applied first of all for ion separation has also been applied in combination with other analytical methods and has been a reference standard as far as sensitivity, repeatability and efficiency are concerned. A thorough comparison of the methods of injection flow analysis and ion chromatography in application to determine nitrogen ionic species has been made by Ferree and Shannon [133].

The quality of analyses performed by ion chromatography has been confirmed by the fact that it has been proved the most versatile and optimal in the analyses of the contents of the main cations and anions (including ionic nitrogen species) in water samples, performed in 155 laboratories in 30 countries within the "Analytical Quality Control and Assessment Studies in the Mediterranean Basin Project" (AQUACON) [134].

Usually the contents of nitrate, nitrite and ammonium ions are determined using ion chromatography with conductometric or UV detection. However, it has been shown that the sensitivity and selectivity of the determinations can be significantly improved by the postcolumn derivatization methods. An exemplary solution is the use of the reaction of the formation of tri-iodides with nitrites and their spectrophotometric detection [135, 136]. The method permits determination of nitrites on a level of a few µg L-1, and what is particularly important - there is no interference by the presence of chlorine ions not oxidized by iodides. Another direction for improving ionic chromatography is design and development of new fillings of the ion-exchange columns, e.g. zwitterionic stationary phases [137, 138]. These phases permit a greater differentiation of the retention times of the ions determined so a better selectivity of determinations also of chlorine, nitrite, sodium and ammonium ions, which has been a basic limitation of their determination by ion chromatography.

Although this paper is devoted to the applications of ion chromatography for determinations of inorganic nitrogen ions, related methods such as high-performance liquid chromatography (HPLC) with normal and reversed phase columns should also be mentioned. A review of the applications of HPLC with reversed-phase columns in determination of inorganic ions has been presented by Gennaro and Angelino [139], and a review of the HPLC applications with normal phases for simultaneous determinations of nitrates and nitrites has been made by Butt et al. [140].

Although ion chromatography has been known and used for over 30 years, it is still a modern method whose application has been extended over new groups of compounds and types of samples. The progress in the method over the years of its application has been described by Lucy [141, 142].

In conclusion, it should be noted that the majority of classical methods are much more time-consuming and laborious than ion chromatography, and sometimes require the use of expensive and toxic reagents. Definite advantages of these methods are low cost of analyses, relatively simple and cheap apparatus, and hence a possibility of use in most laboratories. The main advantages of ion chromatography includes the short time needed for analyses, possibility of analysis of small volume samples, high sensitivity and selectivity, and most importantly – a possibility of simultaneous separation and determination of a few ions, or ions of the same element at different degrees of oxidation, which provides more comprehensive information for the sample studied.

References

 WALNA B., KURZYCA I., SIEPAK J. Local Effects of Pollution on the Chemical Composition of Precipitation in Areas Differing in the Human Impact. Pol. J. Environ. Stud. 13, 36, 2004.

- TANNENBAUM S.R., WALSTRA P., Handbook of Water Analysis, Edit. Nollet L.M., M.Dekker, New York, 2000.
- Minister of Health's Ordinance of 19 November 2002 concerning the quality of water intended for human consumption (in Polish) (Law Gazette no. 203, position 1718)
- Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, Official Journal of the European Communities
- DUSDIEKER L.B., GETCHELL J.P., IIARAKOS T.M., HAUSLER W.J., DUNGY C.I., Nitrate in Baby Foods: Adding to the Nitrate Mosaic, Arch. Ped. Adol. Med., 148, 490, 1994.
- Council Directive 91/676/EEC of 12 December 1991 concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. Official Journal L. 375, 31/12/1991.
- NAMIEŚNIK J., JAMRÓGIEWICZ Z., PILARCZYK M., TORRES L., Preparation of environmental samples for analysis (in Polish), WN-T, Warszawa, 2000
- WALNA B., KURZYCA I., SIEPAK J., Monitoring of anions in the precipitations over the Wielkopolski National Park (in Polish), The Integrated Monitoring of the Natural Environment, edit. W.Bochenek, E.Gil, The Library of the Environment Monitoring 2003, pp. 140-147.
- GARDOLINSKI P.C.F., HANRAHAN G., ACHGTER-BERG E.P., GLEDHILL M., TAPPIN A.D., HOUSE W.A., WORSFOLD P.J. Comparison of Sample Storage Protocols for the Determination of Nutrients in Natural Waters. Wat. Res., 35, 3670, 2001.
- WILLIAMS J., Determination of anions (in Polish), PWN, Warszawa, 1985.
- HADDAD P.R., DOBLE P., MACKA M. Developments in Sample Preparation and Separation Techniques for the Determination of Inorganic Ions by Ion Chromatography and Capillary Electrophoresis (Review). J. Chromatogr. 856, 145, 1999.
- MOORCROFT M.J., DAVIS J., COMPTON R.G. Detection and Determination of Nitrate and Nitrite: A Review. Talanta, 54, 785, 2001.
- ELBANOWSKA H., ZERBE J., SIEPAK J. Physico-chemical analysis of water (in Polish), UAM Printing House, Poznań 1999.
- 14. http://www.epa.gov/region01/oarm/testmeth.pdf
- JACKSON P.E., Ion Chromatography in Environmental Analysis, [in] Encyclopedia of Analytical Chemistry, WileyandSons, Chichester, 2000.
- BUCHBERGER W. W. Detection Techniques in Ion Chromatography of Inorganic Ions. Trend. Anal. Chem. 20, 296, 2001.
- MOU S., WANG H., SUN Q. Simultaneous Determination of the Three Main Inorganic Forms of Nitrogen by Ion Chromatography. J. Chromatogr. 640, 161, 1993.
- SCHWABE R., DARIMONT T., MÖHLMANN T., PABEL E., SONNEBORN M, Determination of Inorganic Compounds and Organic Acids in Different Types of Water by Ion Chromatography. Intern. J. Environ. Anal. Chem., 14, 169, 1983.
- 19. Dionex Application Note 149 (2003), Determination of Chlorite, Bromate, Bromide and Chlorate in Drinking water

By Ion Chromatography with an On-Line Generated Post-Column Reagent for Sub- μ g/L Bromate Analysis.

- SHAW M.J., HADDAD P.R. The Determination of Trace Metal Pollutants in Environmental Matrices Using Ion Chromatography. Environ. Intern., 30, 403, 2004.
- PASTORE P., LAVAGNINI I., BOARETTO A., MAGNO F. Ion Chromatographic Determination of Nitrite in the Presence of a Large Amount of Chloride. J.Chromatogr., 475, 331, 1989.
- SINGH R.P., SMESKO S.A., ABBAS N.M. Ion Chromatographic Characterization of Toxic Solutions: Analysis and Ion Chemistry of Biological Liquids. J.Chromatogr., 774, 21, 1997.
- PEREIRA C.F. Application of Ion Chromatography to the Determination of Inorganic Anions in Foodstuffs. J.Chromatogr., 624, 457, 1992.
- BULDINI P.L., CAVALLI S., TRIFIRO A., State-of-theart Ion Chromatographic Determination of Inorganic Ions in Food, J.Chromatogr. 789, 529, 1997.
- CRUZ C., MAM L. Comparison of Methodologies for Nitrate Determination in Plants and Soils. J. Plant. Nutr. 25, 1185, 2002.
- EVERETT S.A., DENNIS M.F., TOZER G.M., PRISE V.E., WWARDMAN P., STRADFORD R.L. Nitric Oxide in Biological Fluids: Analysis of Nitrite and Nitrate by High-Performance Ion Chromatography. J.Chromatogr., 706, 437, 1995.
- BERNINI R., PICCONI F., IACOVACCI V., ABBALLE F. Meat and Cured Meat Analysed by Means Ion Chromatography. Part II: Nitrite and Nitrate. Indust. Alimen. 40, 741, 2001.
- MONANGHAN J.M., COOK K., GARA D., CROWTHER D. Determination of Nitrite and Nitrate in Human Serum. J.Chromatogr. 770, 143, 1997.
- American Society for Testing and Materials (ASTM), Philadelphia, PA. Annnual Book of ASTM Standards, 1990.
- United States Environmental Protection Agency (US EPA), Environmental Monitoring and Systems Laboratory, Cincinnati. OH. 1990.
- ROMANO J.P., KROL J. Regulated Method for Ion Analysis. J.Chromatogr. 602, 205, 1992.
- COLINA M., GARDNIER P.H.E. Simultaneous Determination of Total Nitrogen, Phosphorus and Sulphur by Means of Microwave Digestion and Ion Chromatography. J.Chromatogr. 847, 285, 1999.
- 33. OHTA K., TANAKA K. Simultaneous Determination of Common Inorganic Anions, Magnesium and Calcium Ions in Various Environmental Waters by Indirect UV-Photometric Detection Ion Chromatography Using Trimellitic Acid EDTA as Eluent. Anal. Chim. Acta. 373, 189, 1998.
- IVSAK J., PENTCHUK J. Analysis of Ionsin Polar Ice Core Samples by Use of Large Injection Volumes in Ion Chromatography. J.Chromatogr. 770, 125, 1997.
- GROS N., GORENC B. Performance of Ion Chromatography in the Determination of Anions and Cations in Various Natural Waters with Elevated Mineralization. J.Chromatogr. 770, 119, 1997.
- UMEMURA T., KAMIYA S., HARAGUCHI H. Characteristic Conversion of Ion Pairs Among Anions and Cations for

Determination of Anions in Electrostatic Ion Chromatography Using Water as a Mobile Phase. Anal. Chim. Acta. **379**, 23, **1999**.

- MUSCARA M.N., DENUCCI G. Simultaneous Detrmination of Nitrite and Nitrate Anions in Plasma, Urine and Cell Culture Supernatants by High-Performance Liquid Chromatography with Post-Column Reactions. J. Chromatogr.B. 686, 157, 1996.
- MICHALSKI R. Simultaneous Determination of Nitrite and Sulfite in Rainwater. Arch. Environ. Prot.. 30, 61, 2004 (in Polish).
- MICHALSKI R. Selected Anions and Cations in Mineral Waters. Arch. Environ. Prot. 29, 8, 2003.
- KRAWCZYK W.E., LEFAUCONNIER B., PETTERSSON L-E. Chemical Denutiation Rates in the Bayelva Catchment, Svalbard, in the Fall of 2000. Phys. Chem. Earth. 28, 1257, 2003.
- MICHALSKI R., OLSINSKA U. The Determination of Bromates in Water by Means of Ion Chromatography. Acta Chromatogr. 6, 127, 1996.
- MICHALSKI R. Determination of Inorganic Anions and Cations in Snow by Using Ion Chromatography. Arch. Environ. Prot. 3, 232, 1993 (in Polish).
- RANTAKOKKO P., MUSTONEN S, YRITYS M., VAR-TIAINEN T. Ion Chromatographic Method for the Determination of Selected Inorganic Anions and Organic Acids from Raw and Drinking Waters Using Suppresor Current Switching to Reduce the Background Noise. J. Liq. Chromatogr. 27, 829, 2004.
- 44. BRUNO P., CASELLI M, De GENNARO G, De TOM-MASO B., LASTELLA G., MASTROLITTI S., Determination of Nutrients in the Presence of High Chloride Concentrations by Column-switching Ion Chromatography. J. Chromatogr. 1003, 133, 2003.
- CONNOLLY D., PAULL B. Fast Ion Chromatography of Common Inorganic Anions on a Short ODS Column Permanently Coated with Dididecyldimethylammonium Bromide. J. Chromatogr. 953, 299, 2002.
- 46. STEFANOVIC S.C., BOLANCA T., CURKOVIC L. Simultaneous Detrmination of Six Inorganic Anions in Drinking Water by Non-suppressed Ion Chromatography. J. Chromatogr. 918, 325, 2001.
- SCHMINKE G., SEUBERT A. Simultaneous Detrmination of Inorganic Disinfection By-products and the Seven Standard Anions by Ion Chromatography. J.Chromatogr. 890, 295, 2000.
- MORALES J.A., De GRATEROL L.S., MESA J. Determination of Chloride, Sulfate and Nitrate in Groundwater Samples by Ion Chromatography. J. Chromatogr. 884, 185, 2000.
- 49. HILDER E. F., ZEMAN A. J., MACKA M., HADDAD P. R. Anion-exchange Capillary Electrochromatography with Indirect UV and Direct Contactless Conductivity Detection. Electrophoresis. 22, 1273, 2001.
- BOYCE M., BRAEDMORE M. C., MACKA M., AVDALOVIC N., HADDAD P.R. Indirect Spectrophotometric Detection of Inorganic Anions in Ion-exchange Capillary Electrochromatography. Electrophoresis. 20, 3073, 2000.

- THABANO J. R. E., ABONG'O D., SAWULA G. M. Determination of Nitrate by Suppressed Ion Chromatography After Copperised-cadmium Column Reduction. J. Chromatogr. 1045, 153, 2004.
- TOOFAN M., STILLIAN J. R., POHL Ch. A., JACKSON P. E., Preconcentration Determination of Inorganic Anions and Organic Acids in Power Plant Waters Separation Optimization Through Control of Column Capacity and Selectivity. J. Chromatogr. 761, 163, 1997.
- MORALES J. A., De GRATEROL L. S., VELASQUEZ H., De NAVA M. G., De BORREGO B. S. Determination by Ion Chromatography of Selected Organic and Inorganic Acids in Rainwater at Maracaibo, Venezuela. J. Chromatogr. 804, 289, 1998.
- LEE J. H., KIM J. S., MIN B. H., KIM S. T., KIM J. H.. Determination of Anions in Certified Reference Material by Ion Chromatography. J. Chromatogr. 813, 85, 1998.
- ACHILLI M., ROMELE L., MARTINOTTI W., SOM-MARIVA G. Ion Chromatographic Determination of Major Ions in Fog Samples. J.Chromatogr. 706, 241, 1995.
- OIKAWA K., MURANO K., ENOMOTO Y., WADA K., INO-MATA T. Automatic Monitoring System for Acid Rain and Snow Based on Ion Chromatography. J. Chomatogr. 671, 211, 1994.
- SHOTYK W. Ion Chromatography of Organic-Rich Natural Waters from Peatlands, PartI: Cl⁻, NO₂⁻, Br, NO₃⁻, HPO₄²⁻, SO₄²⁻ and Oxalate. J. Chromatogr. 640, 309, 1993.
- DABEK-ZLOTORZYNSKA E., DLOUHY J. Automatic Simultaneous Determination of Anions and Cations in Atmospheris Aerosols by Ion Chromatography. J. Chromatogr. 640, 217, 1993.
- SCHUAMNN H., ERNST M. Monitoring of Ionic Concentrations in Airborne Particles and Rain Water in an Urban Area of Central Germany. J. Chromatogr. 640, 241, 1993.
- UMILE C., HUBER J. F. K. Determination of Inorganic and Organic Anions in One Run by Ion Chromatography With Column Switching. J. Chromatogr. 640, 27, 1993.
- ZHANG Q., ANASTASIO C. Chemistry of a Fog Waters in California's Central Valley - Part 3: Concentrations and Speciation of Organic and Inorganic Nitrogen. Atm. Environm. 35, 5629, 2001.
- 62. HOFFMAN P., KARANDASHEV V. K., SINNER T., ORT-NER H. M. Chemical Analysis of rain and Snow Samples from Chernogolovka/Russia by, IC, TXRF and ICP-MS. Fresenius J. Anal. Chem. 357, 1142, 1997.
- ROCHA F. R., REIS B. F. A Flow System Exploiting Muliticommunication for Speciation of Inorganic Nitrogen in Waters. Anal. Chem. Acta. 409, 227, 2000.
- 64. KAPINUS E. N., REVELSKY I. A., ULOGOV V. O., LY-ALIKOV Y. A. Simultaneous Determination of Fluoride, Chloride, Nitrite, Bromide, Nitrate, Phosphate and Sulfate in Aqueous Solutions at 10⁻⁹ to 10⁻⁸ Level By Ion Chromatography. J. Chromatogr. B. **800**, 321, **2004**.
- CHEN Z. I., ADAMS M. A. 2,6-pyrinedicarboxylic Acid as an Eluent for UV and Conductivity Detection of Inorganic Anions, Magnesium and Calcium in Water by Ion Chromatography. Chromatohgraphia. 49, 496, 1999.
- POLKOWSKA Z., GORECKI T., NAMIESNIK J. Quality of Roof Runoff Waters from an Urban Region (Gdańsk, Poland). Chemosphere. 49, 1275, 2002.

- ASTEL A., MAZERSKI J., POLKOWSKA Z., NAMIESN-IK J. Application of PCA and Time Series Analysis in Studies of Precipitation in Tricity (Poland). Advan. Environ. Res. 8, 337, 2004.
- JACKSON P. E., WEIGERT C., POHL C. A., SAINI C. Determination of Inorganic Anions in Environmental Waters with a Hydroxide-selective Column. J. Chromatogr. 884, 175, 2000.
- MOULI P. Ch., MOHAN S. V., REDDY S. J. A Study of Major Inorganic Ion Composition of Atmospheric Areosols at Tirupati. J. Hazard. Mat. 96, 217, 2003.
- DAHLLOF I., SVENSSON O., TORSTENSSON C. Optimising the Determination of Nitrate and Phosphate in Sea Water with Ion Chromatography Using Experimental Design. J. Chromatogr. 771, 163, 1997.
- SIU M. C., HENSHALL A. Ion Chromatography Determination of Nitrate and Nitrite in Meat Products. J. Chromatogr. 804, 157, 1998.
- DING M. Y., SUZUKI Y., KOIZUMI H. Determination of Oxyhalogen Ions in Coffe by Ion Chromatography with Conductometric Detection. Analyst. 120, 1773, 1995.
- BOSCH-BOSCH N., GARCIA-MATA M., PENUELA M. J., RUIZ-GALAN T., LOPEZ-LUIZ B. Determination of Nitrite levels in Refrigerated and frozen Spinach by Ion Chromatography. J. Chromatogr. 706, 221, 1995.
- 74. SACCANI G., GHERARDI S., TRIFIRO A., SORESI-BORDINI C., CALZA M., FREDDI C. Use of Ion Chromatography for the Measurement of Organic Acids in Fruit Juices. J. Chromatogr. 706, 395, 1995.
- MONGAY C., PASTOR A., OLMOS C. Prediction of Inorganic and Organic Ion Behaviour with Polyvalent Eluents in Ion Chromatography. J. Chromatogr. 736, 351, 1996.
- MEHRA M. C., KANDIL M. Ion Chromatographic Detection of Ionic Analytes with Benzendisulfonic Acid Eluents Using Indirect Ultraviolet Detection. Analusis. 24, 17, 1996.
- CAVALLI S., MAURER R., HOFLER F. Fast Determination of Acrylamide in Food Samples Using Accelerated Solvent Extraction (ASE) Followed by Ion Chromatography with UV or MS Detection. LC GC N AM. 35, 36, 2003.
- CHUNG S. Y., KIM J. S., KIM M.L. Survey of Nitrate and Nitrite Contents of Vegetables Grown in Korea. Food Addit. Contam. 20, 621, 2003.
- MURCIA M. A., VERA A., GARCIA-CARMONA F. Determination of Sulphate and Sulphite Ions in Spinach by Ion Chromatography with Conductivity Detection. Food Chem. 52, 161, 1995.
- MADIGAN D., Mc MURROUGH I., SMYTH M.R. Determination of Selected Inorganic Anions in Carbonated Beverages by Ion Chromatography with Conductivity Detector. J. Am. Soc. Brew. Chem. 52, 134, 1994.
- SAARI-NORDHAUS R., ANDERSON J. M. Simultaneous Analysis of Anions and Cations by Single-Column Ion Chromatography. J. Chromatogr. 549, 257, 1994.
- KIM H. J., CONCA K. R. Analysis of Inorganic Anions in Foods by Ion Chromatography. Assoc. Off. Anal. Chem. 73, 561, 1990.

- ROCKLIN R. D., LC Mag. Determination of Inorganic Ions in Food Samples by Ion Chromatography. 7, 1087, 1991.
- BULDINI P. L., CAVALLI S., MEVOLI A. Sample Pretreatment by UV Photolysis for the Ion Chromatographic Analysis of Plant Material. J. Chromatogr. 739, 167, 1996.
- SMOLDERS E., DAEL M., MERCKX R. J. Simultaneous Determination of Extractable Sulphate and Malate in Plant Extracts Using Ion Chromatography. J. Chromatogr. 514, 371, 1990.
- PENTCHUK J., HALDNA U., ILMOJA K. Determination of Nitrate and Chloride Ions in Food by Single Column Ion Chromatography. J. Chromatogr. 364, 189, 1986.
- SANTILLIANA M. I., RUIZ E., NIETO M. T., De ALBA M. Determination of Some Inorganic Ions in Food Samples Using Ion Chromatography. J. Lig. Chromatogr. 16, 1561, 1993.
- TATEO F., FALESCHINI M. L., FOSSATTI M. Simultaneous Multi-component Determination of Food by Ion Chromatography. Ind. Conser. 57, 30, 1982.
- HERTZ J., BALTENSPERGER U. Determination of Anions in Milk Products by ion Chromatography. Fresenius' Z. Anal. Chem. 318, 121, 1984.
- ISKANDARINI Z., PIETRZYK D.J. Determination of elected Inorganic Anions in Food by Ion Chromatography. Anal.Chem., 54, 2601, 1982.
- JACKSON P. E., HADDAD P. R., DILLI S. Determination of Nitrate and Nitrite In Cured Meats Using High-Performance Liquid Chromatography. J. Chromatogr. 295, 471, 1984.
- EGGERS N. J., CATTLE D. L. Determination of Inorganic Anions in Meat Samples by High-Performance Ion Chromatography. J. Chromatogr. 354, 490, 1986.
- DENNIS M. J., KEY P. E., PAPWORTH T., POINTER M., MASSEY R.C. Use of Ion Chromaytography in Food and Beverage Analysis. Food Addit. Contam. 7, 455, 1990.
- ZHOU M., GOU D. Simultaneous Determination of Chloride, Nitrate and Sulphate in Vegetable Samples by Singlecolumn Ion Chromatography. Microchem. J. 65, 221, 2000.
- BULDINI P.L., FERRI D., SHARMA J. L. Determination of Some Inorganic Species in Edible Vegetable Oils and Fats by Ion Chromatography. J. Chromatogr. 789, 549, 1997.
- NONOMURA M., HOBO T. Simultaneous Determination of Sulphur Oxides, Nitrogen Oxides and Hydrogen Chloride in Flue Gas by Means of an Automated Ion Chromatographic System. J. Chromatogr. 804, 151, 1998.
- FUJIMURA K., TSUCHIYA M. Determination of Nitrogen Oxides and Sulphur Oxides in Nitrate Melts by Ion Chromatography. Bunseki Kagaku. 37, 59, 1988.
- MICHALSKI R. Simultaneous Determination of Some Inorganic Compounds in Air by Means Ion Chromatography. Chem. Anal. 47, 855, 2002.
- BARI A., FERRARO V., WILSON L. R., LUTTINGER D., HUSAIN L. Measurements of Gaseous HONO, HNO₃, SO₂, HCl, NH₃ Particulate Sulfate and PM2.5 in New York. Atmospher. Environ. 20, 2825, 2003.
- 100.ZHU Y., LING Y. Y., CHEN J. F. Determination of Inorganic Anions and Organic Acids in Atmospheric Aerosols by Mobile Phase Ion Chromatography Using Zwitterion as eluent. Chin. J. Anal. Chem. **32**, 79, **2004**.

- 101.KROCHMAL D., KALINA A. A Method of Nitrogen Dioxide and Sulphur Dioxide Determination in Ambient Air by Use of Passive Samplers and Ion Chromatography. Atm. Environ. **31**, 3473, **1997**.
- 102.NONOMURA M., HOBO T., KOBAYASHI E., MURAYA-MA T., SATODA M. Ion Chromatographic Determination of Nitrogen Monoxide and Nitrogen Dioxide After Collection in Absorption Bottles. J. Chromatogr. **739**, 301, **1996**.
- 103.ZELLWEGER C., AMMANN M., HOFER P., BALTENS-PRENGER U. NO_y Speciation with a Combined Wet Efflunet Diffusion Denuder-Aerosol Collector Coupled to Ion Chromatography. Atm. Environ. **33**, 1131, **1999**.
- 104.ALI-MOHAMED A. Y., HUSSAIN A. N. Estimation of Atomspheric Inorganic Water-soluble Particulate Matter in Muharraq Island, Bahrain, (Arabian Gulf), by Ion Chromatography. Atm. Environm. 35, 761, 2001.
- 105.STRATFORD M. R. L. DENNIS M. F., COCHRANE R. The Role of Nitric Oxide in Cancer - Improved Methods for Measuremenr of Nitrite and Nitrate by High-performance Ion Chromatography. J. Chromatogr. 770, 151, 1997.
- 106.NAGASHIMA H., OKAMOTO T. Determination of Inorganic Anions by Ion Chromatography Using a Graphitized Carbon Column Dynamically Coated with Cetyltrimethylammonium Ions. J. Chromatogr. 855, 261, 1999.
- 107.HADDAD P. R., TANAKA K, SATO S. J. MORI M., XU Q., IKEDO M, TANAKA S. Determination of Monovalent Inorganic Anions in High-ionic-strength Samples by Electrostatic Ion Chromatography with Suppressed Conductometric Detection. J. Chromatogr. 1039, 59, 2004.
- 108.STALIKAS C. D., KONIDARI C. N., NANOS C. G. Ion Chromatographic Method for the Simultaneous Determination of Nitrite and Nitrate by Post-column Indirect Fluorescence Detection. J. Chromatogr. **1002**, 237, **2003**.
- 109.JEDLICKOVA V., PALUCH Z., ALUSIK S. Determination of Nitrate and Nitrite by High-Performance Liquid Chromatography in Human Plasma. J. Chromatogr.B. 780, 193, 2002.
- 110.SALAS-AUVERT R., COLMENAREZ J., IEDO H., CO-LINA M., GUTIERREZ E., BRAVO A., SOTO I., AZUE-RO S. Determination of Anions in Human and Animal Tear Fluid and Blood Serum by Ion Chromatography. J. Chromatogr. 706, 183, 1995.
- 111.HELALEH M. I. H., KORENAGA T. Ion Chromatographic Method for Simultaneous Determination of Nitrate and Nitrite in Human Saliva. J. Chromatogr. 744, 433, 2000.
- 112.PREIK-STEINHOFF H., MALTE K. Determination of Nitrite in Human Blood by Combination of a Specific Sample Preparation with High-Performance Anion-Exchange Chromatography and Electrochemical Detection. J. Chromatogr. B. 685, 348, 1996.
- 113.El MENYAWII I., LOOAREESUWAN S., KNAPP S., THALHAMMER F., STOISER B., BURGMANN H. Measurement of Serum Nitrite/Nitrate Concentrations Using High-Performance Liquid Chromatography. J. Chromatogr. B. **706**, 347, **1998**.
- 114.XIE Y. T., CHEN P., WEI W.Z. Rapid Analysis of Preservatives in Beverages by Ion Chromatography with Series Piezoelectric Quartz Crystal as Detector. Microchem. J. 61, 58, 1999.

- 115.SPIRO M., LAM P. L. L.. Kinetics and Equilibria of Tea Infusion - Part 12. Equilibrium and Kinetic Study of Mineral Ion Extraction from Black Assam Bukial and Green Chun Mee Teas. Food Chem. 54, 393, 1995.
- 116.VERA A., MURCIA M. A., GARCIA-CARMONA F. Determination of Sulphate and Sulphite Ions in Spinach by Ion Chromatography with Conductivity Detection. J. Food Qual. 18, 19, 1995.
- 117.MORAWSKI J., ALDEN P., SIMS A. Analysis of Cationic Nutrients from Foods by Ion Chromatography. J. Chromatogr. 640, 359, 1993.
- 118.BOCCACCI-MARIANI M., MILANA M. R., GIAMBE-RARDINI S., CAVALLI S. Determination of Food Simulants by Ion Chromatography with Conductivity Detection. Chromatographia. 36, 362, 1993.
- 119.SAARI-NORDHAUS R., ANDERSON J. M. Simultaneous Analysis of Anions and Cations by Single Column Ion Chromatography. J. Chromatogr. 549, 257, 1991.
- 120.JACKSON P. E., KROL J., HECKENBERG A. L., MIENTJES M., STAAL W. Determination of Total Nitrogen in Food, Environmental and Other Samples by Ion Chromatography After Kjeldahl Digestion. J. Chromatogr. 546, 236, 1993.
- 121.YAN D., SCHWEDT G. Simultaneous Ion Chromatography of Inorganic Anions Together with some Organic Anions and Alkaline Earth Metal Cations Using Chelating Agents as Eluent. J. Chromatogr. 516, 383, 1990.
- 122.KIM J-H., LEE J-H. Simultaneous Determination of Six Cations in Mineral Water by Single-column Ion Chromatography. J. Chromatogr. 782, 140, 1997.
- 123.LUE S. J., HUANG C. Determination of Basic Airborne Contaminants in a Cleanroom. J. Chromatogr. 850, 283, 1999.
- 124.DOSCHER A., SCHWINKOWSKI M., GAGGLER H. W. Cation Trace Analysis of Snow and Firn Samples From High-Alpine Sites by Ion Chromatography. J. Chromatogr. 706, 249, 1995.
- 125.SHOTYK W. Ion Chromatography of Organic-Rich Natural Waters from Peatlands, II Na⁺, NH₄⁺, K⁺, Mg²⁺ and Ca²⁺. J. Chromatogr. **640**, 317, **1993**.
- 126.SCHUMANN H., ERNST M. Monitoring of Ionic Concentrations in Airborne Particles and Rain Water in an Urban Area of Central Germany. J. Chromatogr. 640, 241, 1993.
- 127.ROCKLIN R. D., REY M. A., STILLIAN J. R., CAMP-BELL D. L. Ion Chromatography of Monovalent and Divalent Cations. J. Chromatogr. Sci. 27, 474, 1989.
- 128.JACKSON P. E. Determination of Inorganic Ions in Drinking Water by Ion Chromatography. Trends Anal. Chem. 20, 320, 2001.

- 129.GIBB S., MANTOURA R. FAUZI C., LISS, P. S. Analysis of Ammonia and Methylamines in Natural Waters by Flow Injection Gas Diffusion Coupled to Ion Chromatography. Anal. Chim. Acta. 316, 291, 1995.
- 130.LIM L. W., JIN J. Y., TAKEUCHI T. Determination of Inorganic Anions in Natural Water by Microcolumn Ion Chromatography with On-column Enrichment. Anal. Sci. 19, 447, 2003.
- 131.HATSIS P., LUCY Ch. Improved Sensitivity and Characterization of High-speed Ion Chromatography of Inorganic Anions. Anal. Chem. 75, 995, 2003.
- 132.KITAMAKI Y., JIN J. Y., TAKEUCHI T. Simultaneous Determination of Inorganic Nitrogen Species by Microcolumn Ion Chromatography. J. Chromatogr. 1003, 197, 2003.
- 133.FERREE M. A., SHANNON R. D. Evaluation of a Second Derivative UV/visible Spectroscopy Technique for Nitrate and Total Nitrogen Analysis of Wastewater Samples. Wat. Resear. 35, 327, 2001.
- 134.MOSELLO R., TARTARI G. A., MARCHETTO A., PO-LESELLO S., BIANCHI M., MUNTAU H. Ion Chromatography Performances Evaluated from the Third AQUACON Freshwater Analysis Interlaboratory Exercise. Accred. Qual. Assur. 9, 242, 2004.
- 135.MIURA Y., HAMADA H. Ion Chromatography of Nitrite at the ppb Level with Photometric Measurement of Iodide Formed by Post-Column Reaction of Nitrite with Iodide. J. Chromatogr. 850, 153, 1999.
- 136.KITAMAKI Y., JIN J-Y., TAKEUCHI T. Determination of Inorganic Anions via Postcolumn Reaction with Iodide in Ion Chromatography. J. Pharm. Biomed. Anal. 30, 1751, 2003.
- 137.HU W., TANAKA K., HADDAD P. R., HASEBE K. Suppressed Electrostatic Ion Chromatography with Tetraborate as Eluent and Its Application to the Determination of Inorganic Anions in Snow and Rainwater. J. Chromatogr. 884, 161, 2000.
- 138.COOK H. A., DICINOSKI G. W., HADDAD P. R. Mechanistic Studies on the Separation of Cations in Zwitterionic Ion Chromatography. J. Chromatogr. 997, 13, 2003.
- 139.GENNARO M. C., ANGELINO S. Separation and Determination of Inorganic Anions by Reversed-Phase High-Performance Liquid Chromatography (Review). J. Chromatogr. 789, 181, 1997.
- 140.BUTT S. B., RIAZ M., IQBAL M. Z. Simultaneous Determination of Nitrite and Nitrate by Normal Phase Ion-Pair Chromatography. Talanta. 55, 789, 2001.
- 141.LUCY Ch. Recent Advances in Ion Chromatography: A Perspective (Review). J. Chromatogr. **739**, 3, **1996**.
- 142.LUCY Ch. Evolution of Ion-exchange: From Moses to the Manhattan Project to Modern Times. J. Chromatogr. 1000. 711, 2003